Effects of water on pyridine pyrolysis: A reactive force field molecular dynamics study

نویسندگان

چکیده

The emission of nitrogen oxides (NOx) from coal combustion causes serious environmental problems. Fuel splitting and staging is a promising method for NOx control by modification. In this process, nitrogen-containing compounds generated pyrolysis gas play an important role in regulating generation. Water could potentially change reactions during the process. Adjusting content water may be effective way to reactions. This work aims investigate effects on pyridine (a main compound coal) via reactive force field (ReaxFF) molecular dynamics (MD) simulations. Results indicate that addition process increases number OH radicals system accelerates consumption at initial stage. However, later stage, inhibits as it impedes condensation reaction molecules. Common unique intermediates are identified quantified under various water-content conditions. suggest also reduces proportion atoms polycondensation product. Furthermore, ring opening processes molecules reproduced atomic level. changes pathways due presence revealed. new insights into mechanisms water-free conditions provide possibility migration which great significance reduction combustion.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Molecular Dynamics Simulation of Al/NiO Thermite Reaction Using Reactive Force Field (ReaxFF)

In this work, the thermal reaction of aluminum (Al) and nickel oxide (NiO) was investigated by molecular dynamics simulations. Some effective features of reaction such as reaction temperature, the reaction mechanism, and diffusion rate of oxygen into aluminum structure were studied. ReaxFF force field was performed to study the Al/NiO thermite reaction behavior at five different temperatures (5...

متن کامل

Iterative Force-Field Calculation and Molecular Dynamics of Cyclooctanone

Body's iterative force-field computer program has been used to calculate strain energies in cyclooctanone (I). 348 MHZ 1H NMR spectra of (I) have been investigated over the temperature range of 25° to -160°C. Two conformation processes affect the 1H NMR spectrum of (I). Iterative force-field calculations on the conformations and conformational interconversion paths of ...

متن کامل

molecular dynamics simulation of al/nio thermite reaction using reactive force field (reaxff)

in this work, the thermal reaction of aluminum (al) and nickel oxide (nio) was investigated by molecular dynamics simulations. some effective features of reaction such as reaction temperature, the reaction mechanism, and diffusion rate of oxygen into aluminum structure were studied. reaxff force field was performed to study the al/nio thermite reaction behavior at five different temperatures (5...

متن کامل

effects of first language on second language writing-a preliminary contrastive rhetoric study of farsi and english

to explore the idea the investingation proposed, aimed at finding whether the performances of the population of iranians students studying english in an efl context are consistent in l1 and l2 writing taks and whether there is a cross-linguistic transfer in this respect. in this regard the subjects were instructed to write four compositions-two in english and two in farsi-which consisted of an ...

15 صفحه اول

Imaging the C black formation by acetylene pyrolysis with molecular reactive force field simulations.

C black is a class of substantial materials with a long history of applications. However, apart from some descriptions of primary reactions, subsequent processes leading up to the final formation mechanism remain unclear. This mechanism is also crucial for understanding the formation of other carbonaceous materials. In this work, we visualize C black formation by acetylene pyrolysis using molec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Energy

سال: 2022

ISSN: ['1873-6785', '0360-5442']

DOI: https://doi.org/10.1016/j.energy.2021.121798